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J. Phys. A :  Gen. Phys., Vol. 5. March 1972. Printed in Great Britain 

Static perfect fluids in general relativity 

A BARNES? 
Department of Mathematics, Imperial College of Science and Technology, London SW7. U K  

MS received 5 July 1971 

Abstract. All solutions of Einstein's field equations which represent a static perfect fluid 
are considered and a number of results for vacuum fields obtained by Ehlers and Kundt are 
generalized. In $6 5 to 7 all such solutions with a degenerate Weyl tensor are found explicitly. 
As is the case with vacuum fields of Ehlers and Kundt all the solutions obtained are found 
to admit at least a two-parameter group of local isometries. 

1. Introduction 

In this paper I shall consider static solutions of Einstein's equations 

R,, -SRg,, = - T., (1 )  

Greek indices running from 1 to 4, where qp is the energy-momentum tensor of a 
perfect fluid. Consequently 

(2) 

where U,,  p and p are respectively the four velocity, energy density and the pressure of 
the fluid. If there exists a nonzero cosmological constant A i t  may be absorbed in the 
tensor 7& as follows : 

(3) 
All exact solutions of the equations (1) and (2) which have a degenerate Weyl tensor 

will be obtained by a method that generalizes that used by Levi-Civita (1917-9) and 
Ehlers and Kundt (1962, to be referred to as EK) to analyse vacuum fields. 

T l p  = ( P  + P ) W ,  - Pg,, 

P = Pmatter + A P = Pmatter - A. 

2. Theorems on static space-times 

We shall appeal to several general theorems on static space-times which we list below. 
The proofs of these theorems are to be found in EK. 

A space-time is called static if it admits a time-like Killing vector 5 ,  which is hyper- 
surface orthogonal, that is 

If U' is the unit vector parallel to 5" it can be shown that 

U,UZ = - 1 U,$ = -li,up ii,,U,] = 0 ( 5 )  
t Now at School of Mathematics, Merz Court, The University, Newcastle-upon-Tyne, UK. 
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where a dot signifies covariant differentiation along U'. Equation (5) means that the 
integral curves of ua form a normal rigid congruence along which ti, is Fermi-propagated 
(Synge 1960). 

Space-times may be classified (Petrov 1962) by considering certain canonical forms 
of the Weyl tensor defined by 

Crr,rs = Ra,ra + gaBe[yR;l +&a,,, . 
Tetrad components are taken with respect to an orthonormal tetrad of vectors (e:, e:), 
where e: is a time-like vector and capital Latin indices run from 1 to 3. We consider the 
canonical forms of the complex tensor DAB defined by 

DAB = EAB + iHAB = -(CA4B4 + i*cA4B4). 

The Weyl tensor is said to be of Petrov type I, I1 or 111, respectively, if DAB when 
regarded as a linear transformation on a three dimensional complex vector space has 
invariant subspaces of dimension 1 , 2  or 3 respectively. 

It may be shown (EK) from equation (5) that the vector U' is an eigenvector of R,, 
with eigenvalue ti:,. If we choose e: = ua, since H,, = - *CagyauDud = 0, it follows that 
ua is a principal vector of the Weyl tensor and, furthermore, that the Weyl tensor is of 
type I with vanishing pseudoscalars. This follows since DAB is real and may consequently 
be diagonalized by a rotation of the space-like triad (e:). 

If the Weyl tensor is nondegenerate, the principal tetrad is uniquely determined up 
to reflections and so ua is unique. In the degenerate case, the vector U', being an eigen- 
vector of R,, and consequently of T,,, is unique if p + p  # 0. If, however, p + p  = 0, 
the vector ua need not be unique. 

In EK it is shown that coordinates may be chosen in such a way that the metric G 
takes the form 

G = g a b  dx" dxb - exp(2U(xa)) dt2 (6) 

where lower case Latin indices run from 1 to 3 and t = x4. In this coordinate system 
U' = ewU'6: and the coordinates are unique (if U' is unique) up to the transformations 

2" = Z"(xb)  Z = at+b (7) 
where a and b are constants. 

The field equations (1) become 

where WO, is the Ricci tensor of g a b  and 1 I signifies a covariant derivative with respect to 
the metric g a b .  

It follows from equations (8) and (9) that 

R = -2p. (10) 

PI. = - U,.(P + P )  (11) 

P d - J l b l  = P[laUlb] = 0 (12) 

The contracted Bianchi identities (the equations of hydrostatic equilibrium) are 

where I signifies ordinary differentiation. It follows from equation (1 1) that 
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and so if U is not constant both p and p are functions of U only. A second consequence 
of equation (11) is that both p and p are constant when p + p  = 0. From equation (3), 
we can interpret solutions with p + p  = 0 as vacuum solutions with a cosmological 
constant. 

I t  will be convenient to express the metric (6 )  in the form 

G = e-'"(gb, dx" dxb)-eZL' dt'. (6)' 

Using equation (A.l) in the Appendix with n = 3, I/ = e-', the field equations (8) and 
(9) become 

Rbb+2UI,U,, = 2p e-''gAb (8)' 

U\:, = % ~ + 3 p ) e - ' ~  (9)' 

and 

where Rhb is the Ricci tensor of gbb and covariant derivatives are taken with respect to 

Taking tetrad components with respect to a Weyl principal tetrad (e:, e; = U") 
SAh. 

and remembering that the Weyl tensor is of type I with H,4, = 0, we obtain 

gAC = 6AC g44 = - 1 gA4 = 

and 

where the aM are the Weyl principal scalars. Since 

Capya = Rz,,a+gzBc[yR(a]+bRg,p;'a 

we have 

= + k A C R $  + i R A C  -bRgAC). 
Using the equation RA,,, = RAC - RAC, we obtain - 

EA, = iRAC-R,c-i6A,(R~-~R). 

With the aid of equations (l), (2) and (1 3), we obtain - 
R A C  = -$P6AC- 2 @M6MA6MC 

M 

or equivalently 

where PAC is the trace-free part of RAC. Thus we see that a space-like triad of Weyl 
principal vectors form an eigen-triad of the Ricci tensor of the 3-spaces ( t  = constant) 
with eigenvalues - i p  - aM. 

3. Integrability conditions 

In 0 4, in order to solve the field equations (8) and (9) we shall need their integrability 
conditions. 
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Using equation (8) we obtain 

Eliminating second and third derivatives of U by means of equations (8), (10) and the 
Ricci identity, we obtain 

La[bl /  c] = - Ra[bUIc]  +!h- p ) g a [ b v l c ]  + k [ b p l c ]  +&UldRdabc  

where 
1 

L a b  = R a b - $ g a b .  

Using equation (11) and the identity valid for spaces of dimension 3, namely 
1 

R a b c d  = - q a b e ( a e f  - * a g e f ) q f c d ,  we obtain 

Lyb 1 1  c ]  = - U 1 d ( 6 f b e ]  + 26tcP",]). (15) 
On taking triad components of equation (15) and suspending the summation 

convention, it follows from equation (14) that 

2LA[B.C] = - (aB-aA)YBAC + ( a C - a A ) y C A B + a C . B 6 A C -  aB .C6AB-@A[Bp .C]  

and 

2 L A [ B , c l  = ~ A ~ U . c ( a c + 2 a ~ ) - 6 A c ~ . ~ ( a ~ + 2 a c )  
where yABC = eAp;ve$e;: are the Ricci rotation coefficients of the triad (e2) and where a 
dot signifies the triad component of a covariant derivative. 

The equations above are equivalent to 

Y 1 2 3 ( a l - a 2 )  = y 2 3 1 ( a r 2 - a 3 )  = Y 3 1 2 ( a 3 - a 1 )  = E (16) 
say, and 

a A . C + ( a A - a C ) y C A A +  u , C ( a A - @ B ) + i p , C  = for A, E ,  C # . (17) 

Using equations (13), (17), we obtain 

(18) 

The classification of vacuum, nondegenerate fields (Jordan et a1 1960, to be referred 
to as JEK) can be extended immediately to nondegenerate perfect fluid fields since 
equation (16) is identical with equation (3.1.16) of JEK. 

If E = 0, then 7 1 2 3  = 7 3 2 1  = y 3 1 2  = 0, and so the Weyl tetrad is hypersurface 
orthogonal. If, however, E # 0, only e: = U' of the tetrad is hypersurface orthogonal. 

For type D fields (a1  = ar2 = -&a) we see from equations (16) and (17) that 
7 2 3 1  = 7 3 1 2  = 0 and ~ 3 1 1  = y 3 2 2 .  Hence we can use the result obtained in JEK that, by a 
suitable rotation about e 3 ,  e ,  .and e2 can be made hypersurface orthogonal. Hence, 
a coordinate system can be chosen so that 

(19) 

1 
a A . A  + ( a A - a D ) y , - i m - ~ ~ . A  = 0. 

D 

G = (ep1 dx')2+(ep2 d ~ ~ ) ~ + ( e f l ~ d x ~ ) ~ - ( e ~ d t ) ' .  

In this coordinate system 
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4. Type D fields 

These fields are characterized by the condition 

If we choose the space-like triad so that equations (19) and (20) hold and specialize 
equation (17) to degenerate fields, we obtain, for C = 1.2 

We note that U cannot be constant for type D fields, since equation (8) implies that 
the 3-space is an Einstein space and hence of constant curvature (Eisenhart 1949). I t  
follows from equation (14) that a,,, = 0, M = 1.2,3. and consequently the space is 
conformally flat. 

On integrating the third equation of (21) we obtain 

where z = x3 and Z ( z )  is an arbitrary function of integration. Eliminating p,c from the 
second and third of equations (21), we obtain 

From the first equation of (21) it follows that: 

pc = P(X' ,  x2, z )+&(x' ,  x2) pIl3 = -3a-1(C(-3p),3. 

Thus the metric takes the form 

G = eZBdoZ+f2(z)a-ze-4L'dz2-e2"dtz 

where do2 is a two dimensional metric form dependent only on x1 and x2. 
The fields may be divided into four classes : 

(i) p = constant 
(ii) p = p ( z )  that is plroie3Bl = 0, pl& # 0 

(iii) p = p(x', x2) that is pIIae381 # 0, plae; = 0 
(iv) p = p ( x ' ,  x2, z )  that is # 0, plae; # 0. 

The classification is invariant since e; is uniquely determined when U' is, that is 
when p + p # 0. The condition p + p = 0 has already been shown to imply p = constant, 
and consequently all fields with p + p = 0 belong to  class (i). 
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5. Spacetimes of class (i) (constant density) 

Using the fact that p is constant in equations (22) and (24) and eliminating U from 
equation (23) by means of equation (22), we see that the metric takes the form 

(26) G = U -  2i3(da2 + dz2 - e’’ dt’). 

The function of z before the dz2 term in the metric has been eliminated by a coordinate 
transformation of the form Z = Z(z). For the case of constant density, equation (11) 
may be integrated to obtain 

p + p  = 2Ae-’ .  (27) 

We note that equation (26) is identical with equation (3.2.12) of JEK if we put 
x = +e-3‘. - Hence we can follow JEK in subdividing metrics of the form (26) into the 
four classes : (a) the hypersurface, U = constant, contains the space-like eigenblade of 
the Weyi tensor, that is, U = a(z); (b )  the invariant sl is constant; (c) the hypersurface, 
sl = constant, contains the time-like eigenblade of the Weyl tensor, that is, c1 = u(x’, x2) ; 
( d )  the hypersurface, U = constant, contains neither eigenblade of the Weyl tensor, 
that is, a = u(x l ,  x2, z). 

5.1. Case (a) 

In this case, by means of the coordinate transformation z = + ~ l - ” ~ ,  the metric can be 
expressed in the form 

G = z2  da2 + V2(z)  dz2 -exp(2U(z)) dt2. (28) 

On using (A.3) and (A.4) in the Appendix, with W = z,  the field equations become 

7 / - 2  u133+u~3-vlioll+2) V Z = l ( p + 3 p )  2 ( 
where K = K ( x ’ ,  x2) is the gaussian curvature of do2. Since K is the only function in 
equation (29a) that depends on x1 and x2 it must be constant. By a change in the scale 
of z we may set K = k 1, or 0, and choose coordinates 6 and 4 such that 

da2 = de2 +f2(6) d4’ (30) 
where 

f(0) = sin 0,8, sinh 0 

From equations (29a) and (29c), 
respectively. 

K 1 2 q 3 -  

forK = +1,0, -1  

we obtain 
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which, when integrated, gives 

= K-tpz2-2mz-' (31) 

where m is constant. A second consequence of equations (29a and c) is the equation 

V-Zz- '(U,,+ v-1q3) = +(PIP). 

On using equations (27) and (31) we obtain 

(K - fpz2 - 2mz- ') U ,  e" + (fpz - mz- ') e' = Az 

and, on integration 

e" = (K-fpzZ-2mz-') ~ ( K - $ p z ~ - 2 m z - ' ) - ~ ' ~ d z  

In general, equation (32) involves elliptic integrals, but for m = 0 it becomes 

e" = C + B ( K - ~ ~ Z ~ ) " ~  

whereas for p + p  = 0 (ie A = 0) equation (32) becomes 

e" = v-1. 

Using equation (A.3) we see that the invariant a is given by 

a =  -2mz-3. 

If m = 0, it follows that a = 0 and hence that the space is conformally flat. 
The metric (28) admits a four-parameter isometry group G4 = G3 x G,, and G3 

which acts in the (x', x2) surface contains a one dimensional isotropy subgroup. For 
K = 1, G, is isomorphic to the group of the sphere and the space is spherically symmetric. 
For K = 0, G, is isomorphic to the isometry group of the plane, whereas for K = - 1, 
G3 is isomorphic to the group of the two dimensional Lobatschewski space. 

If K = 1 and m = 0 the solution is the interior solution of Schwarzschild (1916) 
and if K = 1 and A = 0 it is the exterior solution of Schwarzschild (1916) with a cosmo- 
logical constant. These solutions generalize those obtained in JEK (case a) for vacuum 
fields to the case of a perfect fluid of constant density. 

5.2. Case (b) 

The metric (26) becomes in this case 

G = do2 + dzZ - exp(2Z(z)) dt2. 

Using equations (A.3) and (A.4) with V = W = 1, the field equations (8) become 
K =  -q 2 P-P) 

and 

z,33 + zf3 = &P - P )  = &P + 3P) 
where K is the gaussian curvature of do2. It follows from these equations that p + p  = 0 
and K = p.  Further, from equation (A.2) we note that -(z133+Zf3) is the gaussian 
curvature of da: = dz2-exp(2Z)dt2, and so the space is the direct product of two 
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two dimensional spaces of the same constant curvature. In fact the metric is given 
explicitly by 

and 
G = de2 + sin2(,/p6) d@ + dz2 - sin2(Jpz) dt2 

G = de2 + sinh2(J( - p ) 8 )  d42  + dz2 - sinh2(J( - p)z )  dt2 

for p > 0 

for p < 0. 

If p = 0 the space-time is flat. The invariant a is given by 01 = -#p. The above solutions 
all possess a six-parameter group of (local) isometries. If p # 0, the space-time is of 
type D and so the group is complete (EK). 

5.3. Cases (c)  and ( d )  

It is convenient to consider these two cases together. We write a = +e-3r, and introduce 
a metric G" by G" = G' exp{ -(42+2Z)}, that is, G" = do2 +dz2. On using equation 
(A.l) with n = 3 and I/ = exp{ - ( 2 ~ +  Z)}, we obtain 

Rbb = R:b-eXp(2T+Z)(eXp{ -(2T+z)})/1ab+eXp{ -(22+z)} 

(exp(2z + Z))(fcg:b 
where covariant derivatives are taken with respect to G" and Rbb and Rib are the Ricci 
tensors of G' and G" respectively. On substituting the above equation into equation (8)', 
we obtain 

R:b- 2 e'(e-3 + e-'(eZ) , l o b  = [2p e'' - exp{ - (22 + Z)} 

(exp(2T + z))\fclgb'b. (33) 
This equation differs from the equation (3.2.29) in JEK by the term involving p ,  and hence 
we may use the proof in JEK to show that, in appropriate coordinates (X, 4, z, t ) ,  the 
metric takes the form 

G = ( X +  Y)- ' ( f - '  dX2+fd42+dz2-e2Zdt2)  (34) 
where X +  Y = e-', Y = Y(z), Z = Z(z) and f = f(X). In case (c), since zI3 = 0, it 
follows that Y is constant and, by a suitable translation of the coordinate X, may be put 
equal to zero. The metric is of the form 

G = X-2(f -1  dX2+fd42+dz2-e2Zdt2).  (35) 
On using equations (8) and (9) we obtain 

e -u  U 1. (e )\, ,-R = P + P  

where I = 1,2. Using equation (AS) with V = X- ' and remembering that e" = X- ez, 
we obtain p + p = 0. 

It is unnecessary to integrate the remaining field equations, since by means of the 
complex coordinate transformation : x = X- ', 6 = it, f = i4 the metric (35) and field 
equations may be put in a form identical with that of equations (28) and (29) with 
p + p  = 0. With the aid of equations (31) and (32b) we obtain the following solution: 

G = (K +2mr- -4pr')-  ' dr2 + (K + 2mr- - Q r 2 )  d@ 

+ ?(de2 - f 2 ( 6 )  dt2) 

where f(6) = sin 6,6,  sinh 6 for K = + 1,0, - 1 respectively. If G is to have the correct 
signature, K + 2mr- ' -4pr' > 0. 
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The invariant U is given by c i  = 2mr-3. 
The solution has a complete four dimensional isometry group and a one dimensional 

isotropy group. The time-like eigensurface of the Weyl tensor ( r  = constant, 
4 = constant) has constant curvature K .  This solution generalizes that of JEK (case b)  
to  include vacuum solutions with a nonzero cosmological constant. 

In case ( d )  Y’ # 0 and X’ # 0. Only two of the field equations (33) remain to be 
integrated. If we put a = b = 3 and use equation (A.5) with I/ = 1 we obtain 

Z” + Z” - 2 ( ~  + Y ) -  Y” = [2p e’* - exp( - (22 + z)} (exp(2z + z))\fC] 
and if we contract (33) we obtain 

f ” + Z ” + Z ’ 2 + 2 ( X +  Y) - ’ (Y”+f ’ )  = 3[2pe2‘-exp{ -(2r+Z))  

x iexp(f2 + Z))\fcl. 

On using equation (A.6) with g” = (gz2)-’  = f ( X )  and g33 = 1 we obtain 

expj - (22 + Z)} (expi22 + 2))Jfc = Z” + 2“ - 2(X + Y)-’( Y” + 2 Y’Z’ +f ’ )  

+ 6 ( X  + Y ) - 2 (  Y” + f ) .  

From the last three equations we obtain 

(2” + Z‘Z)(X + Y ) 2  - (2 Y” + 2 Y’Z’ +f’) (X + Y )  + 3( YIZ + f )  = p (36a) 

and 

(Z” + ZI2 - i f ” ) ( X  + Y )  - 2 Y” +f‘ = 0. 

In addition, equation (9)’ becomes, with the aid of equation (A.6) 

(Z” + P ) ( X  + Y)2-  ( Y ” +  3 Y’Z’+f’)(X + Y)+ 3( Y’Z +f) = $(p + 3p). (37) 

From equations (27), (36a) and (37) it can be seen that 

y”- y’z‘ = A e-Z. (38) 

Equation (36b) is equivalent to the equation 

f ” Y -  2(2” + Z’Z)X = L f ” X  + 2f‘ - 4Y” + 2(Z” + Z’2)Y. (39) 

We note that the right hand side of this equation is the sum of a function of X ,  h ( X )  say, 
and a function of z .  On differentiating equation (39) twice with respect to X it follows 
that f” = h” = 0, and hence 

f = aX3+bX2+cX+d  h = 2(bX+c) (40) 

where a, b, c and d are constants. 
If we substitute the equations (40) in equation (39) we obtain 

2“+2‘2-3aY+b = 0 2Y”-(Z”+Z”)Y = c-bY, 

Consequently 

2Y” = 3aY2-2bY+c 

and hence 

Y” = aY3-bYz+cY+d = g(Y) 

where d is a constant. 
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If a coordinate transformation is made so that z is replaced by Y,  then the metric 
becomes 

From equations (38) and (41) we obtain the equation 

G = ( X +  Y ) - 2 ( f  d X z + f  d @  + g - ’  dY2 -ezz dt2). (42) 

which on integration gives 

ez = g 1 I 2 / B + A  (43) 
\ 

On substituting equation (43) in equation (36), we obtain, with the aid of equation (38) 

3(d+d)+p = 0 

f ( X )  = - g ( - X ) - 4 p .  

a = a ( X +  Y ) 3  

and hence 

The invariant LY is given by 
(44) 

and so if a = 0 the space is conformally flat. We shall assume that a # 0, and then by 
affine transformations of the coordinates X and Yand a change of scale of the coordinates 
4 and t we may set a = f 1 and b = 0 whilst preserving the form of the metric (42). 
The metric is given by equation (42), where f = + X 3 +  c X + d  and g and Z are given 
by equations (43) and (44). There exist two functionally independent metric invariants 

a =  + ( X + Y ) 3  y-2yli$i = + ( X 3 +  Y 3 ) + c ( X +  Y)-$ 

where y = all3.  Thus the trajectories of the isometry group are the two dimensional 
surfaces X = constant, Y = constant. Since the metric is type D, the isotropy group 
acts in either the ( X ,  4 )  surface or the (Y ,  t )  surface and consequently must be discrete. 
Thus, the complete isometry group is two dimensional. From equations (27) and (43), 
we see that the pressure is given by 

p = -p+2Ag-”’ (X+  Y )  B + A  g - 3 ’ 2  ds . (45) i J I - I  

The above solution generalizes the solution C in JEK to the case of a uniform density 
perfect fluid and contains the solution in JEK as a special case. 

6. Space-times of classes (ii-iv) (variable density) 

In case (ii) p = p(z), and from equation (12) it follows that U = V(z)  and hence from 
equations (22)-(24) we may deduce that 

a = u(z) P 3  = 8 3 ( 4  Pc = B ( 4  + P C W ,  x2). 

By means of the coordinate transformation z“ = exp(B(z)) it follows that the metric (25) 
takes the form : 

G = zz do2 + V’(z) dz2 -exp(2U(z)) dt2. (45) 
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This equation is identical with equation (28) and we may use the analysis following 
equation (28) to show that do2 is of constant curvature K ,  and consequently takes the 
form (30) and that 

v-2 = K -  z-1 Ji p(s)s2 ds + 2mz- '. (47) 

For this metric the invariant CI is given by 

c1 = 2mzY3 + ~ Z - ~ J ;  p' (s )s3  ds. 

The metric (46) admits a four-parameter isometry group with a one dimensional isotropy 
subgroup. For K = 1 the space is spherically symmetrical. Spherically symmetrical 
fluids with nonconstant density have been considered by a number of authors (Tolman 
1939, Wyman 1949 and Bondi 1964) and many of their results have trivial generalizations 
to the other two cases ( K  = 0, K = - 1) obtained above. 

We shall consider classes (iii) and (iv) together. For these two classes plc # 0 for 
C = 1,2 and in class (iii) the condition pi3 = 0 is also satisfied. The metric is of the form 
(25) 

(25)' 

where y = /?+U and 

G = e-Zu(e2Y daz+U-Ze- ZC dz2) - e2U dt2 

~ 1 3  = U I ~ - + C I - ' ( C I - ~ ~ ) ~ ~ .  (24)' 
With the aid of equation (A.7), the field equations (8)' become when a = 3 and b = 1,2 

Y13b+Y13(a-1alb+ Ulb )+2U13Ulb  = 0. 
Eliminating y from this equation with the aid of equations (21) and (24)' we obtain 

2(U13b+ U 1 3 U l b ) + ~ a - ' ( a 1 3 U l b +  U13alb)+&M-1(Ulbp13 + U13plb) = O. 
With the aid of equations (12) and (21) we see that 

Ul3bf 2U13Ulb+*a- '(aIJUIb+ 2ulbU13) = 0. (48) 
One consequence of equations (12), (21), and (48) is that 

u11u132 = U12U131 

and hence U = U ( f ( x ' ,  x2), z) and, by means of the coordinate transformation 
2' = X = f ( x ' ,  x2), we see that U = U(X, z). 

Equations (21) and (24)' imply that 

CI = a(X,z) y = Y(X, 2) .  

On choosing x2 = Cp, so that the x1 and x2 lines are orthogonal, we see that the metric 
has the form 

G = e-2"(e2Y(A2(X, Cp)dX2+B2(X, Cp)dCpZ)+a-' e-2udz2}-e2"dt2. 

The remaining field equations (8)', on using equation (A.7) with d; = -a  euy13d;, become 

(49) 
ae"(a-' +a-'al3yI3)a2 e'" = 2 Pe-2u  
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and 

Ri + a eu(o!- ' e- ")lipb + a' e2u6f(y133 + 2yf3 + 713 uI3 + a- '~1~3y13) 

+ ~ U I " U ~ ,  = 2p e-2U6g (50) 

where & is the Ricci tensor of H = e2Y(AZ dXZ +BZ d$') and a, b = 1,2. For a = 1 
and b = 2 equation (50) is (a-' e-')/: = 0, that is, Alz(a-' = 0. Consequently, 
either A = A(X) or o! e" = f "(z). In the latter case equation (50) implies UI"UI, is 
proportional to &, and since U l z  = 0 it follows that U = U(z )  and, from equation (12), 
that p = p(z). This contradicts the defining equations of classes (iii) and (iv). Hence it 
follows that A = A(X). Subtracting the equation (50) with a = b = 2 from that with 
a = b = 1, we see that 

ae"((a-' e-u)\/l-(a-'  e - U ) \ f z ) + 2 ~ 1 1 ~ I ,  = O 

whichimpliesthat B-'B,, = f"(X, z). SinceB = B(X, $),itfollowsthatB-'BI, = f"(X) 
and consequently B = B(X)g($). By means of coordinate transformations of the form 
3 = z ( X ) ,  and 4 = &$), the metric may be put in the form 

G = e - 2 u { e 2 y A 2 ( X ) ( d X Z + d $ 2 ) - a - Z  e-Z"dzZ} -e2"dt2 (51) 

where U = U(X, z), y = y(X, z )  and a = u(X, z). 
In class (iii) we have in addition U13 = 0 and so equations (24)' and (48) imply that 

a13 = 713 = 0. The metric is of the form (51) but in this case U = U(X), y = y(X) and 
U = a(X). The metric (51) admits a two-parameter abelian isometry group in class (iv) 
and a three-parameter abelian group in class (iii). The metric can be put in the Weyl 
normal form 

G = e-2U(e2q(dXZ+dz2)+e2dd$Z} -e2" dt2 

where U = U ( X ,  z), q = q(X, z )  and 6 = 6(X, z), by means of coordinate transformations 
ofthe form 3 = X(X, z), z" = Z(X, z). However, it seems easier to integrate the remaining 
field equations if the metric is left in the form (51). 

If we write es = A exp(y- U )  and V = a-' e-'" in equation (51) and use equation 
(A.7) with d: = -P13V-'6: for p, v = 1,2, we obtain 

1: = e-2P(P111 + V - ' P , , ~ ~ ) S : +  V-2(8133-T/-1P13q3+28f3)6: 

R,3 = V - ' ( V - ' P I ~ ) I ~ G ~  (52) 

+ V- '  e-Z@(ql l  -2Pl,q,)6:6t 

and 

17: = ~ - ' e - ~ ~ ~ / i ~ ~ + 2 ~ - ~ ( ~ ~ ~ ~ + ~ f ~ -  ~ - ~ j ~ ~ q ~ ) .  
Since the metric is of type D and since the z direction is the distinguished Ricci eigenvector 
it follows that R," = 0. Noting that = 0, we see that the X and $ directions are also 
Ricci eigenvectors and consequently R i  = ai. Using equation (52) we see that 

V-'/313 = h(z) q e- ' 8  = g(z). (53) 

(eU)l/l = (e")\fz 

It follows from the field equations (8) that 

(eU)\?' = 0 
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where the covariant derivatives are taken with respect to g a b .  These equations imply 
that 

We note that f # 0 since U,' # 0 for classes (iii) and (iv). Equations (53) and (54) imply 
that 

U l ,  exp(U-2P) = f ( z )  ( V - ' U I 3  e")l, = V-'PI3UI1 e'. (54) 

If we eliminate c1 from equation (48) we obtain the equation 

U 113 - 1 J l - 1  3 ( u l l I / i 3 + 2 U ~ 3 1 / i l )  = O. 

On substituting equation (55) in this equation and writing m(z) = g/ f, we obtain the 
equation 

GI1j3lk' e - L  +k'+(31m'+m')eLj = 0. 

Since GI, # 0, it follows that either 

/ = k' = m' = 0 or k = l+$m-2m' = 0. 

If k = 0, it follows from equations (22) ,  (55) and the definition of I/ that 

m-I = $J'p'(U)e3"dU+exp(3Z(z)). 

Consequently J p ' ( U )  e,' dU is a function of z only and hence either U = U ( z )  or 
p = constant. In either case this contradicts the equation defining classes (iii) and (iv). 
It follows that the equations 1 = k' = m' = 0 must be valid. On substituting these 
equations in (54), (55) we see that 

I/= me'+k p,,  = U , ,  = h(z)V.  

On integrating these equations, we find that 

e2fl = H ( X ) e Z U  e' = k(G(X)n(z) - m)- 

where H ( X )  and G ( X )  are arbitrary functions of integration and n(z) = expu kh dz). 
From the first of the equations (54) it follows that 

H ( X ) f ( z )  = - kG'(X)n(z) 

and hence H ( X )  is proportional to G'(X).  If we make the coordinate transformation 
= - 1 /G(X)  and then make suitable scale changes in the other coordinates, we may 

write the metric in the form 

(56)  G = (n + m X ) -  ' ( F -  dX2 + F d4' + dz2 - X 2  dt') 

where F = F(X) .  The field equations (8) and (9) that are not identically satisfied are 

( :) ( :) 1 
- (n+mX)F"-- (n+mX)  3m-- F '+m 2m-- F-(n+mX)n" 
2 2 

1 
2 

+ 3n'' = - ( p  - p )  (57a) 

(57b) 
1 

mF - 3(n + mX)n" + 3n" = z ( p  - p )  
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and 

On subtracting (57b) from ( 5 7 4  we obtain 

4n”+n ( F ,, +- ;) +mX ( F I, -- ;) = O .  

It follows, on differentiating equation (58)  with respect to z, that either n’(z) = 0 or 
F”+ F’IX = 4 4  where a is a constant. 

In the first case the metric (56) is independent of z and so these cases belong to class 
(iii). The remaining solutions will be shown to belong to class (iv) or to be conformally 
flat. In the case where n‘ = 0 equation (58)  becomes 

(n  - mX)F’ 
X 

= 0. F”(n + m X )  + 
On integrating we find 

F = b+c(n2 In X + 2 m n X + 3 m 2 X 2 )  (59) 

where b and c are constants. From the equations (57)  we obtain the following expressions 
for the pressure and density : 

2p = cX-’(n + ~ z X ) ~ ( n  - m X )  + 2m m - - F ( 3 
2p = cX-’(n + w ~ X ) ~ ( n  + 3 m X )  - 6m2F. 

The invariant a is given by 

c( = -&cX-’( 3 n + w ~ X ) ~ .  

Clearly the space is conformally flat if nc = 0. If nc # 0 the metric admits a complete 
three dimensional abelian local isometry group. The completeness follows from the 
fact that trajectories of the complete group must be contained in the hypersurface 
X = constant and so the group is of dimension at most six. However, the isotropy 
group is of dimension at most one since the metric is of type D and acts in the surface 
X = constant, = constant. Since the vector U’ is unique it follows that the isotropy 
group is discrete and that the complete isometry group is of dimension three. 

If however n’ # 0, F“+ F‘/X = 4a. On integration we obtain the equation 

F = a X ’ + b l n X + c  (60) 

4(n” +an) + d = 0 (61) 

where b and c are constants. From equation (58)  it follows that 

m(XF” - F’) = 0 

where d is constant. Using equations (60) and (61) we see that d = 0 and mb = 0. 
On integrating the first of equations (61) we obtain n = Af(z), wheref(z) = sin(Jaz + B ) ,  
z + B, sinh(J( - a)z + B)  for a > 0, a = 0, a < 0 respectively. 

On using the equation (A.7) we see that the invariant a is given by 

a =  -- ibn’X-’. 
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If the space-time is not conformally flat, b # 0 and consequently m = 0. Thus the 
metric (56) has the form 

G = n-’(F-’ dX2+Fdq5’+dz2-X2dt2) 

where F = F(X) is given by equation (60). On using equations (57) we obtain the follow- 
ing expressions for the pressure and energy-density of the matter : 

2p = 6A’1(0)+bn~X-~ 

2p = - 6 A ’ 1 ( ~ ) + b n ~ X - ~  

where l ( a )  = la/, 1 for a # 0, a = 0 respectively. 
A second (functionally independent of a) invariant is given by 

y = $a-2~\ ia l ’  = ( b l n X + ~ ) n ~ X - ~ + A ~ I ( a ) .  

Thus we may use arguments similar to those for class (id) to show that the complete 
local isometry group is an abelian two dimensional group. It is easily seen from equations 
(62) that the equation of state of the matter is p = p+6A21(a). 

7. Conformally flat space-times 

In this case Cclava = 0 and so from equation (13) it follows that ay = 0 for M = 1,2,3. 
From equation (14) we see that PAC = 0 and consequently the space cross sections 
t = constant, are Einstein spaces of dimension three. Hence the space is of constant 
curvature K = $p (Eisenhart 1949). Consequently we may choose coordinates such that 
the metric takes the form 

(63) G = (1 - Kr2)- dr2 + r2(d02 + sin% dq52) - V’(r, e , $ )  dt2. 

V-lVItl - 1 

The field equations (8) and (9) become 

] lb  - d(P+3p)6g 
and (64) 

v-’v\p, = +(p+3p). 

The integration of equations (64) is a long but straightforward calculation and 
eventually one obtains 

V = ( B  sin q5+C cos q5)r sin 8 + D r  cos O 

+ E( 1 - Kr2)’i2 + A/K for K # 0 

V = (B sin q5 + C cos q5)r sin O+Dr cos O + E  +$4r2 for K = 0 (65) 

where A, B, C, D, E are all constants, A being given by equation (27). By means of a 
rotation we set B = C = 0 in equation (65) whilst preserving the form of the metric (63). 
This solution of the field equations was obtained in a slightly different coordinate 
system by Stepanyuk (1968). It will be shown below that the solution in fact belongs to 
class (ia) with m = 0. 

In the following it will be convenient to use Cartesian coordinates defined by 

x = x 1  = rsinOsinq5 

z = x3 = rcosO. 

y = x2 = rsinOcosq5 
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If K = 0, equation (63) with equations (65), (66) becomes 

G = d x 2 + d y 2 + d z 2 - ( D z + i A r 2 + E ) 2  dt2. (67) 
By means of the coordinate transformation z" = z + D/A, the metric may be expressed 
as 

G = dx2 + dy2 + dz2 - (iAr2 + E  - D2/A2)2 dt2. 

This metric is clearly spherically symmetrical. Since p = 3K = 0 it follows from 
equation (27) that: 

P =  
2A 

iAr2 + E  - D2/A2' 

The above analysis is not valid if A = 0 but in this case the metric (67) is flat. The 
transformation to Minkowski coordinates being given by 5 = (z+E/D) cosh Dt, 
t = (z + E/D) sinh Dt. 

If K # 0 it is convenient to rewrite the metric (63) in isotropic coordinates (R, 8,4, t) 
where R is defined by r = R(l +4KRZ)-'. We obtain 

G = 1 +-KR2 dR2 + R2(d02 +sin2 8 d42) ( 1 I-'{ 
- -+E 1--KR2 +Drcos8 dt2 . (XI I Z i  

The space sections being of constant curvature admit six independent Killing vector 
fields given by (Robertson and Noonan 1968) 

= (1 -aKR2)6i +4Kxa6,,xb & = -EAsC6:6C,Xb. (69) 
It is easily verified that the three 4-vectors q: defined by 

are Killing vectors of the space-time. Since these vectors lie in the two dimensional 
surface V = constant, t = constant, this surface is of constant curvature and using the 
analysis of 0 5 ,  we see that the metric takes the form 

G = (a-Kr2)-' dr2+r2(d82+f2(8)d42)- dt2 (71) 

where f (8) = sin 8,8, sinh 8, for a = + 1,0, - 1, respectively. 
The commutation relations of the operators XA(X, = q: a/axa)  are 

[Xl ,X2] = -(D2K+E2K2)X3 [X,,XJ = -Xi  

[X,,XiI = -X2- (72) 
Hence if DZK+E2K2 > 0, = 0, <O the group is isomorphic to that of the two 
dimensional sphere, plane, Lobatschewski space, respectively and in the metric (71) 
a = +1,0, -1 respectively. 

If p = 3K > 0, we note that D2K+E2K2 > 0 unless D = E = 0 in which case the 
metric (63) is that of the Einstein universe. 
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Consequently we have proved that the only positive density conformally flat static 
perfect fluid solutions are locally isomorphic to the interior Schwartzschild solution or 
one of the Einstein or de Sitter universes. 

8. Conclusions 

All degenerate static perfect fluid solutions of Einstein's equations have been found. 
These are all found to possess at least a two-parameter group of local isometries. The 
solutions obtained are displayed in table 1. The dimensions of the complete isometry 
and isotropy groups are given in columns 5 and 6 respectively. In column 6 the letter 
S or T denotes that the isotropy group acts in the space-like or time-like eigensurface 
of the Weyl tensor respectively. 
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Appendix 

For the reader's convenience we list below a number of useful formulae taken from 

If in an n dimensional pseudoriemannian manifold there exist two conformally 
JEK. 

related metrics G and G where 

G = V 2 G  

then 

w i k  = Rik- (n - 2)v-  ik + (n - 2)- ' v"-'( I/Z-n)\f&ik 

where covariant derivatives are taken with respect to G. 
For a two dimensional metric of the form 

do2 = (Wdx')2f(Vdx2)2 

the following equations are valid : 
RX = -2Kdi 6j R: = -KSL [k 11 

where 

For a three dimensional metric of the form 

G = W2(x3) do2 + ( V(x3) dx3)' 

where doz is a two dimensional metric involving x1 and xz only, we can choose x1 and 
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x2 so that the coordinate lines are Ricci eigendirections. Further the equations 

RE = 0 for p # U (A.3) 

where K is the gaussian curvature of da2, are valid. 
For this metric 

rij= Mi3 6'. I-:~ = 1-3~ = o r33 3 - - T/ 1 /13  fori,j  = 1 ,2  

and if F = F ( x 3 )  then 

For a metric of the form 

G = do2 + (V(X') d ~ ~ ) ~  i , j  = 1 ,2  

the Ricci tensor is given by 

Ri. J = v-1v(ij-K6: R'; = 0 Ri = V - ' V \ f i .  ('4.5) 

For this metric we note that, since r;b = I-:b = 0 for a, b = 1,2,3,  U i I i j  = U,,,, where a 
semicolon denotes a covariant derivative made with do2. 

For a metric of the form G = g,, dx" dxu where p, U = 1 ,2 , .  . . , n, and det(g,,) = 1, 
it follows that V(r, = ($gpL) ,L ,  and if g,, = 0 for p # U 

Finally for a metric of the form 

G = g , , ( X k )  dx" dx" + ( V(xk)  dx")' 

where p, v = 1 ,2 , .  . . , n- 1 and k = 1 , 2 , .  . . , n, the second fundamental form 
D = d,, dx' dx" of the hypersurfaces x" = constant is given by d,, = -iV-la(g,,)/dxn. 
The Ricci tensor of this metric is given by 

and 

R: = V-l(V\i ' , -d)+d, ,dPu 

where a dot signifies alax", RE is the Ricci tensor of g,, and where covariant derivatives 
are taken with respect to g,, . 
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